ЛЮМИНЕСЦЕНТНЫЕ ЛАМПЫ ДНЕВНОГО СВЕТА
Эти приборы относятся к газоразрядным источникам света. Длительное время они выпускались исключительно в форме длинных стеклянных трубок, на концах которых располагались контакты для подключения к светильнику.
Трубка лампы дневного света заполнена инертным газом – аргоном, кроме этого, внутри неё находится небольшое количество ртути.
Зажигание происходит при пробое промежутка между электродами, находящимися на краях трубки. Тлеющий дуговой разряд, происходящий в аргоне с присутствием паров ртути, вызывает выделение ультрафиолетового излучения.
Внутренняя поверхность трубки покрыта специальным веществом – люминофором, основу которого составляют соединения фосфора. При поглощении ультрафиолетового излучения, люминофор излучает электромагнитные волны видимого спектра.
Для изменения цветовой температуры освещения, в люминофор могут вводиться дополнительные вещества, придающие свечению определённые оттенки.
Бытует мнение, что чем ближе искусственное освещение по спектру и цветовой температуре к естественному дневному солнечному свету, тем комфортнее ощущает себя человек.
Несмотря на это, вряд ли найдётся много людей, ощущающих себя более комфортно при освещении люминесцентными источниками дневного света, чем под обычными лампами накаливания.
Наиболее широкое распространение такие устройства получили в качестве осветительных приборов производственных помещений, офисов, мест общего пользования.
На это повлияло наличие некоторых преимуществ:
- повышенная светоотдача на 1 ватт мощности, превышающая аналогичный показатель лампочек накаливания приблизительно в 5 раз;
- более длительный срок службы;
- малое тепловыделение.
Главной причиной высокой популярности люминесцентных ламп на производственных объектах является экономическая эффективность. Необходимый уровень освещённости при их использовании вместо ламп накаливания достигается при меньших в 5 раз затратах электроэнергии.
Кроме этого, газоразрядные источники света, ввиду относительно большой поверхности светового излучения, создают заливающее освещение, не образующее тень.
Несмотря на эти преимущества, в бытовой сфере всеобщего перехода на люминесцентные светильники не случилось. Одна из причин уже была названа – это «неуютность» создаваемого ими освещения.
Вторая причина заключалась в том, что трубчатые исполнения предназначались для использования в специальных светильниках. Их дизайнерское оформление оставляло желать лучшего и на замену люстр в жилых помещениях они не годились.
Интересная метаморфоза произошла с люминесцентными лампами, когда кому-то пришла в голову идея свернуть газоразрядную трубку в спираль и снабдить её цоколем типа Е27 для обычных патронов. Конечно, при этом ещё пришлось сконструировать миниатюрное пусковое устройство, поместившееся там же.
На рынке это новшество было преподнесено как принципиально новая энергосберегающая лампа, и не особенно вдумчивому обывателю трудно было понять, что это старая люминесцентная конструкция в новой упаковке. Так началась вторая жизнь этого газоразрядного источника света.
Наличие общеупотребительного цоколя позволило использовать его практически везде, где до этого стояли лампы накаливания. В некоторых случаях, применение энергосберегающих ламп ограничивается только их размерами, которые чаще превышают размеры ламп накаливания.
Если говорить о недостатках газоразрядных источников, содержащих ртуть, то следует выделить главный минус, относящийся и к трубчатым и к спиральным исполнениям. Это их потенциальная опасность, связанная с возможностью выхода ртути наружу при повреждении колбы. Все лампы такого типа подлежат обязательной утилизации в установленном порядке.
Пришедшие в негодность осветительные приборы следует сдавать в специализированные организации, где осуществляется процедура их демеркуризации, причём на платной основе.
К сожалению, все эти нюансы некоторым покупателям неизвестны, так как недобросовестные продавцы могут об этом просто умалчивать. Другая часть пользователей таких ламп, сознательно не желает напрягаться с их утилизацией. По этой причине, увидеть их просто выброшенными на свалку не такая уж и редкость.
Имеются также некоторые эксплуатационные недостатки люминесцентных ламп. Светильники, укомплектованные дроссельными пусковыми устройствами старой конструкции, издают гудение при работе, а также, создают неприятное для глаз мерцание света. Кроме этого, зажигание происходит с некоторой выдержкой после включения выключателя.
Критерии выбора люминесцентных ламп
Люминесцентные лампы — это оптимальный осветительный прибор для жилья, недаром их второе название — лампы дневного света. Их свет (речь идет о лампах, имеющих цветопередачу не ниже 80) ближе всего к естественному дневному свету. Этому способствует не только сходство спектра излучения, но и его особое рассеивание в пространстве, которое характерно лишь для источников света с относительно большой площадью светящегося тела. И все же главным критерием выбора источника света является его практичность. Свет должен быть комфортным и экономичным. Именно на практичности люминесцентного освещения и базируются наши рекомендации.
Преимущества и недостатки балластов разного типа
Для ограничения величины тока в газовом разряде и предупреждения выхода из строя из-за этого электродов в схемы последовательно включается нагрузка, которая называется по-разному: дроссель, балласт, балластник. Это представители категории пуско-регулирующией аппаратуры (ПРА). Существуют и применяются два вида балластников: электромагнитный и электронный.
ЭмПРА
Электромагнитный балласт (электромеханическая пускорегулирующая аппаратура – ЭПРА) создан на основе трансформаторной комплектации. Это и есть тот самый дроссель – катушка с сердечником. Дроссель при размыкании контактов формирует импульс напряжения с большой величины, обеспечивающий зажигание. Газовая среда в баллоне лампы излучает ультрафиолет, он облучает люминофор, а тот испускает видимый свет.
ЭПРА
Электронная пускорегулирующая аппаратура создаётся на обычных компонентах электронной техники: диодах, триодах, транзисторах, динисторах и т. п. В этом случае в одном устройстве в одной электронной схеме реализуются функции и дросселя, и стартера. Устройство получается лёгким, компактным и дешёвым.
У электронных пусковых устройств имеется хороший набор преимуществ перед магнитными. Они быстро срабатывают и включают лампы. Включённые лампы не мерцают, а устройства работают бесшумно. Тепловые потери снижены. Оптимальная схемотехника обеспечивает длительный срок службы.
Лампа с электронным балластом многофункциональна. Она работает в четырех режимах: включения, предварительного разогревания, зажигания и горения.
Виды
Специалисты все люминесцентные лампы по характеристикам делят на две категории:
- Общего назначения. Это приборы мощностью в пределах 15-80 ватт.
- Специальные: до 15 ватт – это приборы, которые считаются маломощными, и свыше 80 ватт – это сверхмощные.
Основная характеристика ламп общего назначения – это имитация естественного света. То есть практически полное соответствие его цветовым и спектральным характеристикам.
Люминесцентные лампы делятся по нескольким техническим показателям.
- По световому разряду на тлеющие и дуговые.
- По типу излучения: естественный свет, ультрафиолетовый и цветные.
- По форме стеклянной трубки на трубчатые и фигурные.
- По распределению светового потока: ненаправленные и направленные. Кстати, к направленным относятся люминесцентные источники света щелевого типа, панельного, рефлекторного и так далее.
Теперь что касается энергосбережения. Когда разговор заходит о лампе мощностью 36 Вт, необходимо сказать, что это аналог точно такого же прибора только мощностью 40 Вт. Почему? Современные технологии позволяют изменить конструктивные особенности световых приборов за счет использования более качественных и современных материалов, плюс измененные технологические процессы. Так вот в люминесцентных лампах из категории энергосберегающих используется более качественный люминофорный слой и новейшая конструкция (более эффективная) электродного блока. Это привело к тому, что на рынке появились лампы люминесцентные с меньшей мощностью, но с более эффективным световым потоком. И как большое эффективное добавление – это уменьшение диаметра самой стеклянной трубки в 1,6 раза.
Теперь чтобы разобраться в маркировке люминесцентных ламп, необходимо рассмотреть рисунок ниже. На нем четко показано, что обозначают буквенные и цифровые показатели маркировки.
Маркировка
Так как нас интересуют технические характеристики люминесцентной лампы 36 Вт, то для примера разберем маркировку ЛБ-36. Буква «Л» обозначает, что это люминесцентная лампа, буква «Б», что она белого цвета, и соответственно 36 – это ее мощность.
Что касается других видов, то можно отметить:
- ЛТБ с теплым белым цветом. Такие источники света имеют слегка розовый оттенок.
- ЛД – приближенный к дневному свету. Соответственно ЛДЦ – это цветные аналоги данного типа.
- ЛХБ (холодно-белый) – это промежуточный вариант между ЛБ и ЛД.
И еще некоторые технические характеристики:
- Яркость (средняя) – 6-11 Кд/м².
- Такие лампы излучают переменный световой поток (имеется в виду во времени) при их подключении к сети с переменным напряжением.
- Коэффициент пульсации у ЛБ 23%, у ЛДЦ – 43%.
- Если увеличить номинальное напряжение сети, то яркость свуечения самой лампы также увеличивается. Конечно, то же самое относится и к мощности.
- Если световой поток люминесцентной лампы после 70% времени ее эксплуатации составляет 70% от номинала, то эта лампа качественная.
- Срок службы лампы 36 Вт: минимальный – 4800 часов, средний – 12000 часа.
Кстати, европейская маркировка сильно отличается от российской. Здесь степень излучения света маркируется числами. Но самое интересное, что у каждого производителя маркировка отличается. К примеру, у компании «Osram» 765 обозначает холодный цвет, 640 – теплый. У компании «Philips TLD»: 54 – это холодный, 33 – это теплый.
Достоинства и недостатки
К достоинствам люминесцентных ламп можно отнести:
- Приличный коэффициент полезного действия.
- Спектр свечения расширенный.
- Приличный срок эксплуатации.
- Наличие цветных аналогов, специальных (ультрафиолетовых, бактерицидных).
Недостатки:
- В конструкции прибора используются вредные для организма человека вещества.
- Утилизировать их можно только в специально отведенных местах, что очень неудобно.
Для запуска необходим специальный дроссель. А это усложняет и удорожает конструкцию.
Как утилизируют люминесцентные лампы
Внутри колб люминесцентных ламп находится ртуть. Это вещество по ядовитости относится к первому классу опасности.
Содержание ртути в лампе находится в пределах 1÷70 мг (доходит до 1 г). Но даже такой дозы достаточно, чтобы при повреждении колбы нанести вред здоровью человека и другим живым организмам. При регулярном воздействии ядовитых паров ртути происходит ее накапливание в теле, что вызывает развитие различных заболеваний.
Законодательная база
По этой причине в законодательной области разработаны правила обращения и утилизации электронного и электротехнического оборудования, содержащего ртуть:
- на территории Европейского Союза с 2006 года действует Директива RoHS;
- в России – правительственное постановление от 3.09.2010 №681, классификация операций сектора государственного управления (КОСГУ 2020 года подстатьи 225, 226, 244), общероссийский классификатор продукции (ОКПД), ГОСТы (например, 6825-91 – «Лампы трубчатые для общего освещения») и другие нормативные акты.
По закону утилизацию и вывоз ртутьсодержащего оборудования могут выполнять только фирмы, у которых есть на это лицензия. Частные предприниматели и предприятия обязаны делать паспорта на ядовитые отходы и сдавать их на переработку.
Предварительно они должны заключить договор (на 1 год) с утилизирующей фирмой и дать заявку на переработку. При этом стоимость утилизации зависит от вида ламп, а периодичность вывоза отходов устанавливается по договоренности с каждой обслуживаемой организацией отдельно.
Храниться рабочие и отработавшие ртутьсодержащие светильники должны в специально оборудованных складских помещениях с хорошей вентиляцией. Предприятия и предприниматели должны вести журнал хранения, эксплуатации, переработки и замены люминесцентных ламп.
Методы утилизации
На территории РФ широкое распространение получил термовакуумный метод утилизации. Порядок переработки при этом следующий:
- собранные лампочки дробятся прессом;
- раздробленный материал помещают в камеру с большой температурой;
- образующийся при нагреве газ собирается в вакуумной ловушке.
При аналогичном методе на испаряющийся газ воздействуют жидким азотом. Это вызывает затвердение ртути и упрощает ее сбор.
На практике применяется также способ утилизации с помощью химических реагентов. Ими обрабатывают раздробленные светильники. В результате реакции с ртутью образуются устойчивые соединения. Они гораздо безопаснее.
Полученную ртуть используют повторно. Выделенный люминофор отправляют для захоронения на полигонах.
Процесс утилизации люминесцентных ламп
В некоторых городах есть целые полигоны, где утилизируют токсические вещества. В Москве, например, ртутьсодержащие лампочки, используемые в быту, можно бесплатно сдавать в районные отделения ЖЭКов. По всей стране вышедшие из строя лампы принимают в магазинах IKEA, и других специализированных точках продаж.
Согласно статистике только около 10 % лампочек перерабатывают по правилам, а 90 % утилизируют без их соблюдения. Утилизация вредных отходов является актуальной проблемой сегодняшнего дня из-за ухудшения экологии. В этом деле важна привычка и ответственное отношение к себе и окружающей природе.
По своим техническим характеристикам люминесцентные лампы превосходят лампочки накаливания. Их энергосберегающие показатели и разнообразие вызвали широкое использование таких светильников в общественных и в бытовых условиях.
Сравнительно простое устройство и понятный принцип работы делают возможным при минимальных навыках и знаниях обслуживать эти устройства. Понимание маркировки позволяет самостоятельно заменять вышедший из строя элемент схемы аналогичным по характеристикам. Но постоянно следует помнить и соблюдать технику безопасности.
https://youtube.com/watch?v=SU4dzAsRUUM
Рейтинг лучших люминесцентных ламп G5
Navigator 94 109 NTL-T5-21-840-G5 21Вт T5 4200К G5
Мощность этого устройства составляет 21 Вт, при световом потоке – 1575 Лм. Отличное решение для обустройства жилых помещений. Форма – трубчатая. Заявленные габариты: 849х16 мм. Вес – 120 г. Эксплуатационный ресурс составляет 10 тыс. ч.
Navigator 94 109 NTL-T5-21-840-G5 21Вт T5 4200К G5
Достоинства:
- широкая область применения;
- гарантия от производителя;
- простота в использовании;
- стабильность работы;
- не нагревается.
Недостатки:
T4 G5 20W 6400K FERON EST13 3030
Мощность этого устройства составляет 20 Вт. Прекрасный выбор для жилых помещений. Отмечается наличие холодного белого свечения. Световой поток – 1200 Лм. Габариты: 569х12 мм. Вес – 52 г.
Стоимость – 199 руб.
T4 G5 20W 6400K FERON EST13 3030
Достоинства:
- оптимальная мощность;
- гарантия от производителя;
- компактность;
- удобство в использовании;
- отсутствие перегрева.
Недостатки:
Camelion FT5-8W 33
Эта популярная модель предназначена для обустройства конференц-залов, аудиторий и классов. Световой поток источается равномерно. Отмечается наличие оптимальной цветопередачи, за счет чего глаза не будут уставать в процессе длительной работы или учебы. Кадмий в составе отсутствует, что следует учесть в процессе выбора.
Сколько стоит приспособление? Покупка обойдется в 168 руб.
Camelion FT5-8W 33
Достоинства:
- универсальное положение;
- эксплуатационный ресурс;
- безопасность;
- широкая область применения;
- гарантия от производителя.
Недостатки:
Как подключить лампу
Люминесцентную лампу можно подключить несколькими способами. Выбор зависит от условий эксплуатации и предпочтений пользователя.
Подключение с использованием электромагнитного балласта
Распространен метод подключения с использованием стартера и ЭмПРА. Питание в сети запускает стартер, который замыкает биметаллические электроды.
Ограничение тока в схеме осуществляется за счет внутреннего дроссельного сопротивления. Рабочий ток можно увеличить практически в три раза. Стремительный нагрев электродов и появление процесса самоиндукции вызывают зажигание.
Подключение при помощи ЭмПРА.
Сравнивая метод с другими схемами подключения ламп дневного света, можно сформулировать недостатки:
- значительный расход электроэнергии;
- длительный запуск, который может занимать 3 с;
- схема не способна функционировать в условиях пониженных температур;
- нежелательное стробоскопическое мигание, негативно влияющее на зрение;
- дроссельные пластинки по мере износа могут издавать гудение.
Схема включает один дроссель на две лампочки, для одноламповой системы метод не подойдет.
Две трубки и два дросселя
В данном случае реализуется последовательное подключение нагрузок с подачей фазы на вход сопротивления.
Выход через фазу соединяется с контактом осветительного прибора. Второй контакт направляется на нужный вход стартера.
Схема с двумя трубками и двумя дросселями.
От стартера контакт идет к лампе, а свободный полюс — к нулю схемы. Так же подключается второй светильник. Подсоединяется дроссель, после чего монтируется колба.
Схема подключения двух ламп от одного дросселя
Для подсоединения двух осветительных приборов от одного стабилизатора потребуется два стартера. Схема экономная, поскольку дроссель это наиболее дорогой компонент системы. Схема показана на рисунке ниже.
Схема подключения двух светильников от одного дросселя.
Электронный балласт
Электронный балласт представляет собой современный аналог традиционного электромагнитного стабилизатора. Он значительно улучшает пуск схемы и делает использование осветительного прибора более комфортным.
Такие аппараты не гудят во время работы и потребляют значительно меньше электроэнергии. Мерцаний не появляется даже при низких частотах напряжения.
Подключение с помощью электронного балласта.
Обмотки трансформатора в данном случае включаются противофазно, а генератор нагружается высокочастотным напряжением. При подаче резонансного напряжения внутри колбы происходит пробой газовой среды, который порождает необходимое свечение.
Сразу после розжига сопротивление и подаваемое на нагрузку напряжение падают. Запуск при помощи схемы обычно занимает не более секунды. Причем можно легко использовать источники освещения без стартера.
Использование умножителей напряжения
Использование умножителей напряжения.
Метод помогает использовать люминесцентную лампу без электромагнитной балансировки. В ряде случаев он наиболее эффективен и продлевает срок службы аппарата. Даже перегоревшие приборы способны проработать некоторое время при мощностях, не превышающих 40 Вт.
Схема выпрямления дает значительное ускорение и возможность увеличить напряжение в два раза. Для его стабилизации используются конденсаторы.
Тематическое видео: Подробно про умножитель напряжения
Важно помнить, что люминесцентные лампочки не предназначены для работы с постоянным током. С течением времени ртуть скапливается в определенном участке, что снижает яркость
Для восстановления показателя необходимо периодически менять полярность, переворачивая колбу. Можно установить переключатель, чтобы не разбирать прибор.
Подключение без стартера
Схема подключения без стартера.
Стартер увеличивает время разогрева прибора. Однако он недолговечен, поэтому пользователи задумываются о подключении освещения без него через вторичные трансформаторные обмотки.
В продаже можно найти аппараты с маркировкой RS, которая говорит о возможности подключения без стартера. Установка такого элемента в осветительный прибор помогает значительно сократить время зажигания.
Принцип работы и устройство ЛЛ
Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.
Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.
Как работает люминесцентная лампочка?
В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.
После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.
Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.
Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях
Конструкционные особенности прибора
Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:
- прямая удлиненная трубка;
- изогнутый U-образный модуль;
- кольцо;
- сложная фигура.
В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».
В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока
С наружной части электродные элементы подпаяны к металлическим штырькам металлического цоколя, на которые подается рабочее напряжение.
U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.
Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.
В схему цепи включения обычной люминесцентной лампочки входит дроссель или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.
Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов
Помимо этой детали, ЭмПРА комплектуется стартером. Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.
Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.
Работа люминесцентного светильника
Для поддержания непрерывного свечения люминесцентного осветительного прибора в нём необходимо постоянное присутствие тлеющего разряда. Это достигается благодаря подаче определённого уровня напряжения на электроды люминесцентного светильника. Единственной проблемой в данном случае является необходимость постоянной подачи напряжения в значительной мере превышающего номинальные значения.
Данная проблема была решена установкой электродов с обеих сторон колбы. На них подаётся напряжение, благодаря чему происходит непрерывное поддержание разряда. При этом каждый электрод состоит из двух контактов, соединённых с источником тока, за счёт чего прогревается окружающее пространство. Поэтому лампа начинает гореть с задержкой, обусловленной прогревом электродов.
Под действием разрядов электродов газ начинает светиться ультрафиолетовым свечением, которое не воспринимает человеческий глаз. Поэтому для проявления света внутренняя часть колбы вскрывается слоем люминофора, благодаря которому происходит изменение частотных диапазонов в видимый человеком спектр.
Люминесцентная лампа не может, в отличие от стандартного источника света с нитью накаливания, включаться напрямую в сеть переменного тока. Для возникновения дуги, необходим прогрев электродов, вследствие которого появляется импульсное напряжение. Чтобы обеспечить необходимые условия для свечения люминесцентного источника света используют специальные балласты. На сегодняшний день широко применяется электромагнитный и электронный балласт.